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Abstract

We provide closed form solutions for the value of selected first generation exotic
options in the Black-Scholes model as used frequently to quote the theoretical value
(TV). These formulae allow a fast computation; all involve the normal density and
cumulative distribution function.

Key words. barrier options, digital options, touch options, lookback options, forward start
options, compound options, instalment options, pricing formulae for first generation exotic
options, Black-Scholes model

1 Pricing Formulae for Foreign Exchange Options

The Foreign Exchange Options market is highly competitive, even for products beyond vanilla
call and put options. This means that pricing and risk management systems always need to
have the fastest possible method to compute values and sensitivities for all the products in
the book. Only then can a trader or risk manager know the current position and risk of his
book. The ideal solution is to use pricing formulae in closed form. However, this is often only
possible in the Black-Scholes model.
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1.1 General Model Assumptions and Abbreviations

Throughout this article we denote the current value of the spot St by x and use the abbrevi-
ations listed in Table 1.

τ
∆
= T − t θ±

∆
=

rd−rf
σ
± σ

2

Dd
∆
= e−rdτ d±

∆
=

ln( x
K

)+σθ±τ

σ
√
τ

Df
∆
= e−rf τ x±

∆
=

ln( x
B

)+σθ±τ

σ
√
τ

n(t)
∆
= 1√

2π
e−

t2

2 z±
∆
=

ln(B
2

xK
)+σθ±τ

σ
√
τ

N (x)
∆
=
∫ x
−∞ n(t) dt y±

∆
=

ln(B
x

)+σθ±τ

σ
√
τ

φ = +1 for call options φ = −1 for put options

t: current time T : maturity time

K: strike B, L, H: barriers

Table 1: Abbreviations used for the pricing formulae of FX options

The pricing follows the usual procedures of Arbitrage pricing theory and the Fundamental the-
orem of asset pricing. In a Foreign Exchange market this means that we model the underlying
exchange rate by a geometric Brownian motion

dSt = (rd − rf )St dt+ σSt dWt, (1)

where rd denotes the domestic interest rate, σ the volatility, Wt as standard Brownian motion,
see Foreign Exchange symmetries for details. Most importantly, we note that there is a foreign
interest rate rf . Like in Option pricing: general principles, one can compute closed form
solutions for many options types with payoff F (ST ) at maturity T directly via

v(t, x) = e−rdT IE[F (ST )|St = x]

= e−rdT IE
[
F
(
xe(rd−rf− 1

2
σ2)τ+σ

√
τZ
)]
, (2)

where v(t, x) denotes the value of the derivative with payoff F at time t if the spot is at
x. The random variable Z represents the continuous returns, which are modeled as standard
normal in the Black-Scholes model. In this model we can proceed as
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v(t, x) = e−rdτ
∫ +∞

−∞
F
(
xe(rd−rf− 1

2
σ2)τ+σ

√
τz
)
n(z) dz

= Dd

∫ +∞

−∞
F
(
xeσθ−τ+σ

√
τz
)
n(z) dz. (3)

The rest is working out the integration. In other models one would replace the normal density
by another density function such as a t-density. However, in many other models densities are
not explicitly known, or even if they are, the integration becomes cumbersome.

For the resulting pricing formulae, there are many sources, e.g. [11], [7], [17]. Many general
books on Option Pricing also contain formulae in a context outside Foreign exchange, e.g. [8],
[18]. Obviously, we can’t cover all possible formulae in this section. We give an overview of
several relevant examples and refer to Foreign exchange basket options, the Margrabe formula
and Foreign exchange quanto options for more. FX vanilla options are covered in Foreign
Exchange symmetries.

1.2 Barrier Options

We consider the payoff for single barrier knock-out options

[φ(ST −K)]+II{ηSt>ηB,0≤t≤T} = [φ(ST −K)]+II{mint∈[0,T ](ηSt)>ηB}, (4)

where the binary variable η takes the value +1 if the barrier B is approached from above
(down-and-out) and −1 if the barrier is approached from below (up-and-out).
To price knock-in options paying

[φ(ST −K)]+II{mint∈[0,T ](ηSt)≤ηB} (5)

we use the fact that

knock-in + knock-out = vanilla. (6)

Computing the value of a barrier option in the Black-Scholes model boils down to knowing
the joint density f(x, y) for a Brownian motion with drift and its running extremum (η = +1
for a maximum and η = −1 for a minimum),(

W (T ) + θ−T, η min
0≤t≤T

[η(W (t) + θ−t)]

)
, (7)

which is derived, e.g., in [15], and can be written as

f(x, y) = −ηeθ−x−
1
2
θ2−T

2(2y − x)

T
√

2πT
exp

{
−(2y − x)2

2T

}
, (8)

ηy ≤ min(0, ηx).
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Using the density (8) the value of a barrier option can be written as the following integral

barrier(S0, σ, rd, rf , K,B, T ) = e−rdT IE
[
[φ(ST −K)]+II{ηSt>ηB,0≤t≤T}

]
(9)

= e−rdT
∫ x=+∞

x=−∞

∫
ηy≤min(0,ηx)

[φ(S0e
σx −K)]+ II{ηy>η 1

σ
ln B
S0
}f(x, y) dy dx. (10)

Further details on how to evaluate this integral can be found in [15]. It produces four terms.
We provide the four terms and summarize in Table 2 how they are used to find the value
function.

option type φ η in/out reverse combination

standard up-and-in call +1 −1 −1 K > B A1

reverse up-and-in call +1 −1 −1 K ≤ B A2 − A3 + A4

reverse up-and-in put −1 −1 −1 K > B A1 − A2 + A4

standard up-and-in put −1 −1 −1 K ≤ B A3

standard down-and-in call +1 +1 −1 K > B A3

reverse down-and-in call +1 +1 −1 K ≤ B A1 − A2 + A4

reverse down-and-in put −1 +1 −1 K > B A2 − A3 + A4

standard down-and-in put −1 +1 −1 K ≤ B A1

standard up-and-out call +1 −1 +1 K > B 0

reverse up-and-out call +1 −1 +1 K ≤ B A1 − A2 + A3 − A4

reverse up-and-out put −1 −1 +1 K > B A2 − A4

standard up-and-out put −1 −1 +1 K ≤ B A1 − A3

standard down-and-out call +1 +1 +1 K > B A1 − A3

reverse down-and-out call +1 +1 +1 K ≤ B A2 − A4

reverse down-and-out put −1 +1 +1 K > B A1 − A2 + A3 − A4

standard down-and-out put −1 +1 +1 K ≤ B 0

Table 2: The summands for the value of single barrier options
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A1 = φxDfN (φd+)− φKDdN (φd−) (11)

A2 = φxDfN (φx+)− φKDdN (φx−) (12)

A3 = φ

(
B

x

) 2θ−
σ

[
xDf

(
B

x

)2

N (ηz+)−KDdN (ηz−)

]
(13)

A4 = φ

(
B

x

) 2θ−
σ

[
xDf

(
B

x

)2

N (ηy+)−KDdN (ηy−)

]
(14)

1.3 Digital and Touch Options

1.3.1 Digital Options

Digital options have a payoff

v(T, ST ) = II{φST≥φK} domestic paying, (15)

w(T, ST ) = ST II{φST≥φK} foreign paying. (16)

In the domestic paying case the payment of the fixed amount is in domestic currency, whereas
in the foreign paying case the payment is in foreign currency. We obtain for the value functions

v(t, x) = DdN (φd−), (17)

w(t, x) = xDfN (φd+), (18)

of the digital options paying one unit of domestic and paying one unit of foreign currency
respectively.

1.3.2 One-Touch Options

The payoff of a one-touch is given by

RII{τB≤T}, (19)

τB
∆
= inf{t ≥ 0 : ηSt ≤ ηB}. (20)

This type of option pays a domestic cash amount R if a barrier B is hit any time before the
expiration time. We use the binary variable η to describe whether B is a lower barrier (η = 1)
or an upper barrier (η = −1). The stopping time τB is called the first hitting time. In FX
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markets it is usually called a one-touch (option), one-touch-digital or hit option. The modified
payoff of a no-touch (option), RII{τB≥T} describes a rebate which is paid if a knock-in-option
has not knocked in by the time it expires and can be valued similarly simply by exploiting the
identity

RII{τB≤T} +RII{τB>T} = R. (21)

Furthermore, we will distinguish the time at which the rebate is paid and let

ω = 0, if the rebate is paid at first hitting time τB, (22)

ω = 1, if the rebate is paid at maturity time T, (23)

where the former is also called instant one-touch and the latter is the default in FX options
markets. It is important to mention that the payoff is one unit of the domestic currency. For
a payment in the foreign currency EUR, one needs to exchange rd and rf , replace x and B by
their reciprocal values and change the sign of η, see Foreign Exchange symmetries.

For the one-touch we will use the abbreviations

ϑ−
∆
=
√
θ2
− + 2(1− ω)rd and e±

∆
=
± ln x

B
− σϑ−τ

σ
√
τ

. (24)

The theoretical value of the one-touch turns out to be

v(t, x) = Re−ωrdτ

(B
x

) θ−+ϑ−
σ

N (−ηe+) +

(
B

x

) θ−−ϑ−
σ

N (ηe−)

 . (25)

Note that ϑ− = |θ−| for rebates paid at end (ω = 1).
The risk-neutral probability of knocking out is given by

IP [τB ≤ T ] = IE
[
II{τB≤T}

]
=

1

R
erdTv(0, S0). (26)

Properties of the First Hitting Time τB. As derived, e.g., in [15], the first hitting
time

τ̃
∆
= inf{t ≥ 0 : θt+W (t) = x} (27)

of a Brownian motion with drift θ and hit level x > 0 has the density

IP [τ̃ ∈ dt] =
x

t
√

2πt
exp

{
−(x− θt)2

2t

}
dt, t > 0, (28)

the cumulative distribution function

IP [τ̃ ≤ t] = N
(
θt− x√

t

)
+ e2θxN

(
−θt− x√

t

)
, t > 0, (29)
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the Laplace-transform

IEe−ατ̃ = exp
{
xθ − x

√
2α + θ2

}
, α > 0, x > 0, (30)

and the property

IP [τ̃ <∞] =

 1 if θ ≥ 0

e2θx if θ < 0
(31)

For upper barriers B > S0 we can now rewrite the first passage time τB as

τB = inf{t ≥ 0 : St = B}

= inf

{
t ≥ 0 : Wt + θ−t =

1

σ
ln

(
B

S0

)}
. (32)

The density of τB is hence

IP [τ̃B ∈ dt] =

1
σ

ln
(
B
S0

)
t
√

2πt
exp

−
(

1
σ

ln
(
B
S0

)
− θ−t

)2

2t

 , t > 0. (33)

Derivation of the Value Function. Using the density (33) the value of the paid-at-end
(ω = 1) upper rebate (η = −1) option can be written as the the following integral.

v(T, S0) = Re−rdT IE
[
II{τB≤T}

]
= Re−rdT

∫ T

0

1
σ

ln
(
B
S0

)
t
√

2πt
exp

−
(

1
σ

ln
(
B
S0

)
− θ−t

)2

2t

 dt (34)

To evaluate this integral, we introduce the notation

e±(t)
∆
=
± ln S0

B
− σθ−t

σ
√
t

(35)

and list the properties

e−(t)− e+(t) =
2√
t

1

σ
ln

(
B

S0

)
, (36)

n(e+(t)) =

(
B

S0

)− 2θ−
σ

n(e−(t)), (37)

∂e±(t)

∂t
=

e∓(t)

2t
. (38)
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We evaluate the integral in (34) by rewriting the integrand in such a way that the coefficients
of the exponentials are the inner derivatives of the exponentials using properties (36), (37)
and (38).

∫ T

0

1
σ

ln
(
B
S0

)
t
√

2πt
exp

−
(

1
σ

ln
(
B
S0

)
− θ−t

)2

2t

 dt

=
1

σ
ln

(
B

S0

)∫ T

0

1

t(3/2)
n(e−(t)) dt

=

∫ T

0

1

2t
n(e−(t))[e−(t)− e+(t)] dt

= −
∫ T

0

n(e−(t))
e+(t)

2t
+

(
B

S0

) 2θ−
σ

n(e+(t))
e−(t)

2t
dt

=

(
B

S0

) 2θ−
σ

N (e+(T )) +N (−e−(T )). (39)

The computation for lower barriers (η = 1) is similar.

1.3.3 Double-No-Touch Options

A double-no-touch with payoff function

II{L<mint∈[0,T ] St≤maxt∈[0,T ] St<H} (40)

pays one unit of domestic currency at maturity T , if the spot never touches any of the two
barriers, where the lower barrier is denoted by L, the higher barrier by H. A double-one-touch
pays one unit of domestic currency at maturity, if the spot either touches or crosses any of
the lower or higher barrier at least once between inception of the trade and maturity. This
means that a portfolio of a double-one-touch and a double-no-touch is equivalent to a certain
payment of one unit of domestic currency at maturity.

To compute the value, let us introduce the stopping time

τL,H
∆
= min {inf {t ∈ [0, T ]|St = L or St = H}, T} (41)
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and the notation

h̃
∆
=

1

σ
ln
H

St
(42)

l̃
∆
=

1

σ
ln
L

St
(43)

θ̃±
∆
= θ±

√
τ (44)

h
∆
= h̃/

√
τ (45)

l
∆
= l̃/

√
τ (46)

ε±
∆
= ε±(j) = 2j(h− l)− θ̃± (47)

nT (x)
∆
=

1√
2πT

exp

(
− x

2

2T

)
. (48)

At any time t < τL,H , the value of the double-no-touch is

v(t) = IEt
[
DdII{L<mint∈[0,T ] St≤maxt∈[0,T ] St<H}

]
, (49)

and for t ∈ [τL,H , T ],

v(t) = DdII{L<mint∈[0,T ] St≤maxt∈[0,T ] St<H}. (50)

The joint distribution of the maximum and the minimum of a Brownian motion can be taken
from [12] and is given by

IP

[
l̃ < min

[0,T ]
Wt ≤ max

[0,T ]
Wt < h̃

]
=

∫ h̃

l̃

kT (x) dx (51)

with

kT (x) =
∞∑

j=−∞

[
nT (x+ 2j(h̃− l̃))− nT (x− 2h̃+ 2j(h̃− l̃))

]
. (52)

One can use Girsanov’s Theorem (see Equivalent Martingale Measure and Ramifications) to
deduce that the joint density of the maximum and the minimum of a Brownian motion with

drift θ, W θ
t

∆
= Wt + θt, is then given by

kθT (x)
∆
= kT (x) exp

{
θx− 1

2
θ2T

}
. (53)

We obtain for the value of the double-no-touch at any time t < τL,H
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v(t, St) = DdIEII{L<minu∈[t,T ] Su≤maxu∈[t,T ] Su<H}

= DdIEII{l̃<minu∈[t,T ]W
θ−
u ≤maxu∈[t,T ]W

θ−
u <h̃}

= Dd

∫ h̃

l̃

k
θ−
(T−t)(x)dx

= Dd ·
∞∑

j=−∞

[
e−2jθ̃−(h−l) {N (h+ ε−)−N (l + ε−)} (54)

− e−2jθ̃−(h−l)+2θ̃−h {N (h− 2h+ ε−)−N (l − 2h+ ε−)}
]

and for t ∈ [τL,H , T ]

v(t, St) = DdII{L<minu∈[t,T ] Su≤maxu∈[t,T ] St<H}. (55)

Of course, the value of the double-one-touch is given by

Dd − v(t, St). (56)

To obtain a formula for a double-no-touch paying foreign currency, see Foreign Exchange
symmetries.

1.4 Lookback Options

Lookback options are path dependent. At expiration the holder of the option can “look
back” over the life time of the option and exercise based upon the optimal underlying value
(extremum) achieved during that period. Thus, Lookback options (like Asian options) avoid
the problem of European options that the underlying performed favorably throughout most
of the option’s lifetime but moves into a non-favorable direction towards maturity. Moreover,
(unlike American Options) Lookback options optimize the market timing, because the investor
gets -by definition- the most favorable underlying price. As summarized in Table 3 Lookback
options can be structured in two different types with the extremum representing either the
strike price or the underlying value. Figure 1 shows the development of the payoff of Lookback
options depending on a sample price path. In detail we define

MT
∆
= max

0≤u≤T
S(u) and mT

∆
= min

0≤u≤T
S(u). (57)

Variations of Lookback options include Partial Lookback Options , where the monitoring period
for the underlying is shorter than the lifetime of the option. Conze and Viswanathan [2] present
further variations like Limited Risk and American Lookback Options.
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payoff lookback type parameter used below

in valuation

MT − ST floating strike put φ = −1, η = +1

ST −mT floating strike call φ = +1, η = +1

(MT −X)+ fixed strike call φ = +1, η = −1

(X −mT )+ fixed strike put φ = −1, η = −1

Table 3: Types of lookback options. The contract parameters T and X are the time to
maturity and the strike price respectively, and ST denotes the spot price at expiration
time. Fixed strike lookback options are also called hindsight options.
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Figure 1: Payoff profile of Lookback calls (sample underlying price path, m = 20 trading
days)
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In theory, Garman pointed out in [4], that Lookback options can also add value for risk
managers, because floating (fixed) strike lookback options are good means to solve the timing
problem of market entries (exits), see [9]. For instance, a minimum strike call is suitable to
avoid missing the best exchange rate in currency linked security issues. However, this right is
very expensive. Since one buys a guarantee for the best possible exchange rate ever, lookback
options are generally way too expensive and hardly ever trade. Exceptions are performance
notes, where lookback and average features are mixed, e.g. performance notes paying say 50%
of the best of 36 monthly average gold price returns.

1.4.1 Valuation

We consider the example of the floating strike lookback call. Again, the value of the option is
given by

v(0, S0) = IE
[
e−rdT (ST −mT )

]
(58)

= S0e
−rfT − e−rdT IE [mT ] .

In the standard Black-Scholes model (1), the value can be derived using the reflection principle
and results in

v(t, x) = φ

{
xDfN (φd+)−KDdN (φd−) +

1− η
2

φDd[φ(R−X)]+

+ηxDd
1

h

[( x
K

)−h
N (−ηφ(d+ − hσ

√
τ))− e(rd−rf )τN (−ηφd+)

]}
. (59)

This value function has a removable discontinuity at h = 0 where it turns out to be

v(t, x) = φ

{
xDfN (φd+)−KDdN (φd−) +

1− η
2

φDd[φ(R−X)]+

+ ηxDdσ
√
τ [−d+N (−ηφd+) + ηφn(d+)]

}
. (60)

The abbreviations we use are
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h
∆
=

2(rd − rf )
σ2

, (61)

R
∆
= running extremum: extremum observed until valuation time, (62)

K
∆
=

 R floating strike lookback

−φmin(−φX,−φR) fixed strike lookback
, (63)

η
∆
=

 +1 floating strike lookback

−1 fixed strike lookback
. (64)

Note that this formula basically consists of that for a vanilla call (1st two terms) plus another
term. Conze and Viswanathan also show closed form solutions for fixed strike lookback options
and the variations mentioned above in [2]. Heynen and Kat develop equations for Partial Fixed
and Floating Strike Lookback Options in [10]. We list some sample results in Table 4.

1.4.2 Discrete Sampling

In practice, one can not take the average over a continuum of exchange rates. The standard is
to specify a fixing calendar and take only a finite number of fixings into account. Suppose there
are m equidistant sample points left until expiration at which we evaluate the extremum. In
this case the value function vm can be determined by an approximation described by Broadie,
Glasserman and Kou [1]. We set

β
∆
= −ζ(1/2)/

√
2π = 0.5826, (ζ being Riemann’s ζ-function) (65)

α
∆
= eφβσ

√
τ/m, (66)

and obtain for fixed strike lookback options

vm(t, x, rd, rf , σ, R,X, φ, η) = v(t, x, rd, rf , σ, αR, αX, φ, η)/α, (67)

and for floating strike lookback options

vm(t, x, rd, rf , σ, R,X, φ, η) = αv(t, x, rd, rf , σ, R/α,X, φ, η)− φ(α− 1)xDf . (68)

1.5 Forward Start Options

1.5.1 Product Definition

A forward start vanilla option is just like a vanilla option, except that the strike is fixed on
some future date tf ∈ (0, T ), specified in the contract. The strike is fixed as αStf , where
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payoff discretely sampled continuously sampled

(67) and (68) (59) or (60)

MT − ST 0.0231 0.0255

ST −mT 0.0310 0.0320

(MT − 0.99)+ 0.0107 0.0131

(0.97−mT )+ 0.0235 0.0246

Table 4: Sample values for lookback options. For the input data we used spot S0 = 0.9800,
rd = 3%, rf = 6%, σ = 10%, τ = 1

12
, running min R = 0.9500, running max R = 0.9900,

number of equidistant fixings m = 22.

α > 0 is some contractually defined factor (very commonly one) and Stf is the spot at time
tf . It pays off

[φ(ST − αStf )]+. (69)

1.5.2 The Value of Forward Start Options

Using the abbreviations

d±(x)
∆
=

ln x
K

+ σθ±(T − tf )
σ
√
T − tf

, (70)

dα±
∆
=
− lnα + σθ±(T − tf )

σ
√
T − tf

, (71)

we recall the value of a vanilla option with strike K at time tf as

vanilla(tf , x;K,T, φ) = φ
[
xe−rf (T−tf )N (φd+(x))−Ke−rd(T−tf )N (φd−(x))

]
. (72)

For the value of a forward start vanilla option we obtain

v(0, S0) = e−rdtf IE[vanilla(tf , Stf ;K = αStf , T, φ)] (73)

= φ
[
S0e

−rfTN (φdα+)− αS0e
(rd−rf )tf e−rdTN (φdα−)

]
.

Noticeably, the value computation is easy here, because the strike K is set as a multiple of
the future spot. If we were to choose to set the strike as a constant difference of the future
spot, the integration would not work in closed form, and we would have to use numerical
integration.
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1.5.3 Example

We consider an example in Table 5.

call put

value 0.0251 0.0185

Table 5: Value of a forward start vanilla in USD on EUR/USD - spot of 0.9000, α = 99%,
σ = 12%, rd = 2%, rf = 3%, maturity T = 186 days, strike set at tf = 90 days

1.6 Compound and Instalment Options

An instalment call option allows the holder to pay the premium of the call option in instalments
spread over time. A first payment is made at inception of the trade. On the following payment
days the holder of the instalment call can decide to prolong the contract, in which case he
has to pay the second instalment of the premium, or to terminate the contract by simply not
paying any more. After the last instalment payment the contract turns into a plain vanilla
call.

1.6.1 Valuation in the Black-Scholes Model

The intention of this section is to obtain a closed-form formula for the n-variate instalment
option in the Black-Scholes model. For the cases n = 1 and n = 2 the Black-Scholes formula
and Geske’s compound option formula (see [5]) are well known special cases.

Let t0 = 0 be the instalment option inception date and t1, t2, . . . , tn = T a schedule of decision
dates in the contract on which the option holder has to pay the premiums k1, k2, . . . , kn−1 to
keep the option alive. To compute the price of the instalment option, which is the upfront
payment V0 at t0 to enter the contract, we begin with the option payoff at maturity T

Vn(s)
∆
= [φn(s− kn)]+

∆
= max[φn(s− kn), 0],

where s = ST is the price of the underlying asset at T and as usual φn = +1 for a call option,
φn = −1 for a put option.

At time ti the option holder can either terminate the contract or pay ki to continue. This
means that the instalment option can be viewed as an option with strike k1 on an option with
strike k2 . . . on an option with strike kn. Therefore, by the risk-neutral pricing theory, the
holding value is

e−rd(ti+1−ti)IE[Vi+1(Sti+1
) | Sti = s], for i = 0, . . . , n− 1, (74)
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where

Vi(s) =


[
e−rd(ti+1−ti)IE[Vi+1(Sti+1

) | Sti = s]− ki
]+

for i = 1, . . . , n− 1

Vn(s) for i = n
. (75)

Then the unique arbitrage-free time-zero value is

P
∆
= V0(s) = e−rd(t1−t0)IE[V1(St1) | St0 = s]. (76)

Figure 2 illustrates this context.

Figure 2: Lifetime of the Options Vi

One way of pricing this instalment option is to evaluate the nested expectations through
multiple numerical integration of the payoff functions via backward iteration. Alternatively,
one can derive a solution in closed form in terms of the n-variate cumulative normal, which is
described in the following.

1.6.2 The Curnow and Dunnett Integral Reduction Technique

Denote the n-dimensional multivariate normal integral with upper limits h1, . . . , hn and cor-

relation matrix Rn
∆
= (ρij)i,j=1,...,n by Nn(h1, . . . , hn;Rn). Let the correlation matrix be

non-singular and ρ11 = 1.
Under these conditions Curnow and Dunnett [3] derived the following reduction formula for
multivariate normal integrals

Nn(h1, · · · , hn;Rn) =

∫ h1

−∞
Nn−1

(
h2 − ρ21y

(1− ρ2
21)1/2

, · · · , hn − ρn1y

(1− ρ2
n1)1/2

;R∗n−1

)
n(y)dy,

R∗n−1
∆
= (ρ∗ij)i,j=2,...,n,

ρ∗ij
∆
=

ρij − ρi1ρj1
(1− ρ2

i1)1/2(1− ρ2
j1)1/2

. (77)
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For example, to go from dimension 1 to dimension 2 this takes the form

∫ x

−∞
N (az +B)n(z) dz = N2

(
x,

B√
1 + a2

;
−a√
1 + a2

)
, (78)

or more generally,

∫ x

−∞
eAzN (az +B)n(z) dz = e

A2

2 N2

(
x− A, aA+B√

1 + a2
;
−a√
1 + a2

)
. (79)

1.6.3 A Closed Form Solution for the Value of an Instalment Option

Heuristically, the formula which is given in the theorem below has the structure of the Black-
Scholes formula in higher dimensions, namely S0Nn(·) − knNn(·) minus the later premium
payments kiNi(·) (i = 1, . . . , n−1). This structure is a result of the integration of the vanilla
option payoff, which is again integrated minus the next instalment, which in turn is integrated
with the following instalment and so forth. By this iteration the vanilla payoff is integrated
with respect to the normal density function n times and the i-th payment is integrated i times
for i = 1, . . . , n− 1.

The correlation coefficients ρij of these normal distribution functions contained in the formula
arise from the overlapping increments of the Brownian motion, which models the price process
of the underlying St at the particular exercise dates ti and tj.

Theorem 1.1 Let ~k = (k1, . . . , kn) be the strike price vector, ~t = (t1, . . . , tn) the vector of

the exercise dates of an n-variate instalment option and ~φ = (φ1, . . . , φn) the vector of the
put/call- indicators of these n options.
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The value function of an n-variate instalment option is given by

Vn(S0,~k,~t, ~φ) = e−rf tnS0φ1 · . . . · φn

×Nn

[
ln S0

S∗1
+ σθ+t1

σ
√
t1

,
ln S0

S∗2
+ σθ+t2

σ
√
t2

, . . . ,
ln S0

S∗n
+ σθ+tn

σ
√
tn

;Rn

]

− e−rdtnknφ1 · . . . · φn

×Nn

[
ln S0

S∗1
+ σθ−t1

σ
√
t1

,
ln S0

S∗2
+ σθ−t2

σ
√
t2

, . . . ,
ln S0

S∗n
+ σθ−tn

σ
√
tn

;Rn

]

− e−rdtn−1kn−1φ1 · . . . · φn−1

×Nn−1

 ln S0
S∗1

+ σθ−t1

σ
√
t1

,
ln S0

S∗2
+ σθ−t2

σ
√
t2

, . . . ,
ln S0

S∗n−1
+ σθ−tn−1

σ
√
tn−1

;Rn−1


...

− e−rdt2k2φ1φ2N2

[
ln S0

S∗1
+ σθ−t1

σ
√
t1

,
ln S0

S∗2
+ σθ−t2

σ
√
t2

; ρ12

]

− e−rdt1k1φ1N

[
ln S0

S∗1
+ σθ−t1

σ
√
t1

]
, (80)

where S∗i (i = 1, . . . , n) is to be determined as the spot price St for which the payoff of the cor-

responding i-variate instalment option (i = 1, . . . , n) is equal to zero, i.e. Vi(S
∗
i ,
~k,~t, ~φ) = 0.

This has to be done numerically by a zero search.

The correlation coefficients in Ri of the i-variate normal distribution function can be expressed
through the exercise dates ti,

ρij =
√
ti/tj for i, j = 1, . . . , n and i < j. (81)

The proof is established with Equation (77). Formula (80) has been independently derived by
Thomassen and Wouve in [16] and Griebsch, Kühn and Wystup in [6].
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